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A B S T R A C T

While tomographic neuroimaging data is information rich, objective, and with high sensitivity in the study of
brain diseases such as Alzheimer's disease (AD), its direct use in clinical practice and in regulated clinical trial
(CT) still has many challenges. Taking CT as an example, unless the relevant policy and the perception of the
primary outcome measures change, the need to construct univariate indices (out of the 3-D imaging data) to serve
as CT's primary outcome measures will remain the focus of active research. More relevant to this current study, an
overall global index that summarizes multiple complicated features from neuroimages should be developed in
order to provide high diagnostic accuracy and sensitivity in tracking AD progression over time in clinical setting.
Such index should also be practically intuitive and logically explainable to patients and their families. In this
research, we propose a new visualization tool, derived from the manifold-based nonlinear dimension reduction of
brain MRI features, to track AD progression over time. In specific, we investigate the locally linear embedding
(LLE) method using a dataset from Alzheimer's Disease Neuroimaging Initiative (ADNI), which includes the
longitudinal MRIs from 562 subjects. About 20% of them progressed to the next stage of dementia. Using only the
baseline data of cognitively unimpaired (CU) and AD subjects, LLE reduces the feature dimension to two and a
subject's AD progression path can be plotted in this low dimensional LLE feature space. In addition, the likelihood
of being categorized to AD is indicated by color. This LLE map is a new data visualization tool that can assist in
tracking AD progression over time.
1. Introduction

Alzheimer's Disease (AD), the most common cause of dementia, is
accompanied with brain structure changes such as the whole or regional
brain atrophy. Thus, in addition to the amyloid and tau related bio-
markers, which are increasingly become informative (Jack et al. (2018),
diagnosing AD using neurodegenerative biomarkers such as the
MRI-based volumetric measures is expected to provide supportive evi-
dence to the conventional clinical diagnosis practice, which employs
mainly cognitive tests and functional symptoms as well as the family
medical history reviewed by physicians. While tomographic neuro-
imaging data is information rich, objective, and with high sensitivity in
the study of brain diseases such as AD, its direct use in clinical practice
and in regulated clinical trial (CT) still has many challenges. Taking CT as
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such indices.

� The volume of a pre-defined brain region (e.g., hippocampus volume)
(Den Heijer et al. (2010))

� Glucose update in a pre-defined brain region (e.g., posterior cingu-
late) (Jagust et al. (2009); Landau et al. (2012))

� AD signature, an index defined byMayo Clinics (Weston et al. (2016))
� The statistical region of interest (ROI) for tracking longitudinal
changes (Chen et al. (2010))

Especially in the clinical setting, a single ROI-based index is a
simplified version of disease marker that can be easily understood by
patients and their families, but it may not be sensitive enough (as some of
them are only derived from a local region (ROI), while others are
introduced for different purposes, e.g., disease prognosis) for disease
detection. One remedy is to summarize information over the whole brain
(all voxels), not just a local region. This is a multivariate approach to
defining a disease index.

One challenge from this approach is dimension reduction, in which
information in high dimensional image data is represented in a low
dimensional subspace by a set of principal attributes. The projected data
in the low-dimensional space becomes more robust to noise and they can
assist in building more stabilized diagnosis and prognosis models. In
earlier studies, various linear dimension reduction techniques such as
partial least square (PLS) (Phan et al. (2010)), principal component
analysis (PCA) (Franke et al. (2010); Ayutyanont et al. (2010a,b);
Khedher et al. (2015); Segovia et al. (2016)) on MR images have been
studied and reported. However, it is recognized that the linear dimension
reduction techniques may fail to convey proper latent information from
high-dimensional space to low-dimensional space due to the complex
non-linear patterns in dataset (Mwangi et al. (2014)). This is particularly
true in handling neuroimaging data. Thus, nonlinear methods have been
suggested by many researchers (e.g., Khajehnejad et al. (2017); Gerber
et al. (2010); Hamm et al. (2010)). Gerber et al. (2010) investigated the
applicability of manifold learning (nonlinear dimensionality reduction)
on MR brain image data and Akhbardeh and Jacobs (2012) described the
application of a novel scheme by combining wavelet transform and
non-linear dimension reduction techniques to analyze breast MRI data.

Tracking AD progression over time has both clinical and research
significance. Clinicians need to predict the progression of AD andmedical
researchers desire a good progression model so as to develop appropriate
biomarkers or to design effective clinical trials. The standard method
calculates the AD progression rate by examining patients on cognitions,
functions and behaviors over time (Doody et al. (2010)). With the
structural MRI data, the atrophies measured on some important ROIs,
such as hippocampi, as well as on the whole brain have become a
powerful biomarker for the identification of neurodegenerative stage and
intensity in AD pathology (Vemuri and Jack (2010); Ayutyanont et al.
(2010a,b); Ayutyanont et al. (2013)). In an early study, using voxel-based
morphometry to map the structural change associated with conversion in
MCI patients was discussed in Chetelat et al. (2005). More recently,
structural MRI-based AD diagnosis approaches have been more exten-
sively explored in the literature (see McEvoy et al. (2009); Magnin et al.
(2009); Ewers et al. (2011); Lopez et al. (2011); Matoug et al. (2012);
Lama et al. (2017); Long et al. (2017)). Most of them were using
machine-learning tools such as support vector machine (SVM), import
vector machine (IVM), regularized extreme learning machine (RELM),
etc. In addition, longitudinal analysis and penalized regression methods
have been applied on medical images to predict rapid-to-moderately-fast
conversions from MCI to dementia (see Misra et al. (2009); McEvoy et al.
(2011); Hinrichs et al. (2011); Moradi et al. (2015); Teipela et al. (2015);
Korolev et al. (2016); Huang et al. (2017)).

In this paper, we develop a new visualization tool by using nonlinear
dimension reduction of whole brain MRI features to track AD progression
over time. A longitudinal dataset of high-dimensional features is repre-
sented in a two-dimensional space so that a patient's AD progression can
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be easily traced and contrasted with the population model. Meanwhile,
each lower dimensional data point also contains the information of
higher dimensional features obtained from a classification model, and
this leads to the minimum loss of prediction power. In order to effectively
reduce dimensionality without losing AD classification accuracy, we
apply a feature prescreening process on the data, and then apply a
manifold-based dimension reduction technique, called locally linear
embedding (LLE), on the reduced feature set. The data is mapped into a
two-dimensional space and visualization of the data provides a conve-
nient diagnosis for AD progression. As we apply LLE to a longitudinal
dataset, the proposed method also allows us to track feature changes over
time because the neighborhood structure of the reduced feature set is
preserved on the LLE map. We use a machine-learning technique, support
vector machine (SVM), to classify a subject being CU or AD. For each data
point, the SVMmodel assigns a probability value of being classified to the
AD category and colors the point based on this probability value.
Therefore, we can visualize the AD progression of a patient by mapping
out his/her LLE features on a two-dimensional chart over time. This
visualization tool provides a direct depiction of the severity of AD and the
speed of its progression, thus easy to be understood by patients.

In summary, the contributions of this paper are trifold – 1) a nonlinear
dimension reduction technique is applied and it is better than linear
dimension reduction in terms of capturing the internal structure of the
high-dimensional feature space of brain images, thus improving the ac-
curacy and sensitivity of SVM model in classifying AD and CU; 2) the
visualization of these low-dimensional manifold features and the likeli-
hood of AD, instead of brain images themselves, gives a more objective
measure of AD progression over time; and 3) this new approach of feature
fusion and visualization can help clinical prognosis and doctor-patient
communication, and may further assist in AD research and drug devel-
opment in the future.

The remaining of the paper is organized as follows: In Section 2.1, a
brief description of dataset is provided. Then our data processing pipeline
from feature prescreening to LLE representation is explained through
Section 2.2 to 2.5. The validation of the proposed approach with the SVM
model and the further development of the SVM model is provided in
Sections 2.6 and 2.7. The application of this classification model on new
observations is described in Section 2.7. In Section 3, the use of LLE map
for AD progression tracking is explained and demonstrated on some
patient data. Finally, Section 4 concludes the study.

2. Materials and methods

2.1. Brain MRI feature dataset

The brain MRI data used in this research are obtained from the Alz-
heimer's Disease Neuroimaging Initiative (ADNI) database (adni.lon
i.usc.edu). The ADNI was launched in 2003 as a public-private partner-
ship, led by Principal Investigator Michael W. Weiner, MD. The primary
goal of ADNI has been to test whether serial magnetic resonance imaging
(MRI), positron emission tomography (PET), other biological markers,
and clinical and neuropsychological assessment can be combined to
measure the progression of mild cognitive impairment (MCI) and early
Alzheimer's disease (AD). For up-to-date information, see www.adni
-info.org.

This dataset consists of multiple 1.5T MRI scans, corresponding to
multiple visits over time for each of 761 subjects, that have been pro-
cessed by FreeSurfer (version 4.4) (Reuter et al. (2012)). A total of 346
brain features, mostly the cortical thickness and volumes of various brain
regions (e.g., volume of right superior temporal, cortical thickness
average of left hippocampus) are stored in this dataset. The dataset also
contains the QC output from manual inspection. Only the data with QC
pass are used in our analysis, which give 2,402 scans of 562 subjects. The
number of visits for a subject varies from 2 to 8 over the time period of
years 2005–2011. Based on the diagnosis of the first visit (the baseline
state), 177 cognitively unimpaired (CU), 277 mild cognitive impairment
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(MCI), and 108 AD subjects are identified. Among them, 14 subjects
progress from CU to MCI and 109 subjects progress from MCI to AD over
the study's time period. The data analysis procedure applied on these 562
subjects is illustrated in Fig. 1.

2.2. Data preprocessing

The FreeSurfer image processing carries out the brain image regis-
tration based on the within-subject template. On top of that, in order to
reduce the between-subject variability, each brain feature is divided by
intracranial vault volume (ICV) of the corresponding subject so that the
feature value can be interpreted as a fraction of brain volume, instead of a
raw measurement value. After then, a unit normal scaling is applied to
each feature, which is given as

zij ¼ xij � xj
sj

; i ¼ 1;…; 2402; j ¼ 1;…; 346: (1)
Fig. 1. An overview of d
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where xj and sj are the average and the standard deviation, respectively,
of the jth feature.

2.3. Feature prescreening

The 346 original features may include some features that have little to
no correlation with AD. Such features increase the magnitude of noise in
the data and can hamper a successful dimension reduction. Therefore, we
need to prescreen original features and select the ones that are moder-
ately to highly correlated to AD. To do that, the correlation between a
feature and the diagnosis result was evaluated by the intraclass correla-
tion (IC), which is based on the following one-way random effect model:

zijk ¼ μj þ bjk þ εijk ; (2)
ata analysis process.
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bjk � N 0; σ2bj ; (3)

� �

εijk � N
�
0; σ2εj

�
; (4)

where k ¼ fCU;MCI;ADg is the index for diagnosis group, zijk is the jth

feature value of the ith instance which is diagnosed to the kth category; μj
is the overall mean of the jth attribute; bjk is the effect of group k; and εijk is
the error term. The IC is defined to be

ρj ¼
σ2bj

σ2
bj þ σ2

εj

: (5)

It is interpreted as the proportion of between-group variability in the
total variability. Fig. 2 shows one example of a highly correlated feature
(left) and another example of an almost independent feature (right) to AD
diagnosis. We filter out the features that have ρj less than 0.1, and as a
result, 59 brain features are retained for future analysis. A list of these 59
features is provided in Table 1.

2.4. Nonlinear dimension reduction by locally linear embedding

Previous studies have shown that the high-dimensional brain MRI
features could be represented well in a low-dimensional space by using
manifold-based dimension reduction techniques. Among others, Liu et al.
(2013) applied locally linear embedding (LLE) to cross-sectional brain
MRI feature data, and they showed that LLE features increased AD clas-
sification performance. Wolz et al. (2012) suggested a framework to
incorporate subjects’ meta-information into the manifold learning.
Aljabar et al. (2011) proposed a combined representation of neonatal
brain MR images from multiple features by using separate manifold
learning steps.

In our study, we apply LLE to the prescreened longitudinal dataset
explained in the previous section so as to illustrate the change of a brain
over time. The basic idea of LLE is to force the neighborhood of an
instance in the high-dimensional space to be preserved in the low-
dimensional space with the same reconstruction weights (Roweis and
Saul (2000); Saul and Roweis (2003)). Specifically, given a dataset x1; …
; xn 2 RD in a high-dimensional space, we aim to find a low-dimensional
representation y1;…;yn 2 Rd, where d < D, such that the neighborhood
structure can be retained as much as possible. The LLE algorithm can be
summarized by the following three steps:
Fig. 2. Examples of brain features with (a) high corr
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1. For each data instance xi, find the k nearest neighbors xi1; xi2;…;xik,
by using Euclidean distance.

2 To find the optimal reconstruction weights in the original space,
suppose xi can be linearly reconstructed by its nearest neighbors, we

let bxi ¼
Pk
j¼1

wijxij. Then, the reconstruction weights wij, j ¼ 1;…;k, for

each data point can be obtained by solving this optimization problem:

min
w

���xi �Xk

j¼1
wijxij

���
2

; s:t:
Xk

j¼1
wij ¼ 1 (6)

3. Finally, to find the new representation of the data in a reduced
space, we again assume that yi is a data point in the reduced space and it
can be linearly reconstructed by its nearest neighbors, that is byi ¼Pk
j¼1

wijyij, where wij is the weights obtained from the previous step. Then,

the LLE coordinates Y ¼ ðyT
1 ; y

T
2 ;…; yTn ÞTcan be obtained by solving

min
Y

Xn

i¼1

���yi �Xk

j¼1
wijyij

���
2

; s:t:
Xn

i¼1
yi ¼ 0; YTY ¼ I (7)

The objective function of Eq. (7) can be rewritten as YTMY where
M ¼ ðI �WÞTðI � WÞ. Then, the solution is obtained by computing the
eigenvectors ofM that correspond to d small eigenvalues and using these
eigenvectors to construct the columns of Y .
2.5. LLE representation

The dataset, as described in Section 2.1, includes repeated measure-
ments from the same subject and these observations are typically corre-
lated. To avoid any confounding effect of such correlation on LLE
representation, we applied the LLE method on the first visit records of CU
and AD subjects only. Different values of the number of nearest neighbors
were tried, and each outcomewas manually inspected to see whether two
classes were reasonably separated in the two-dimensional space. As a
result, k ¼ 16 was chosen for the LLE representation of first visit records.
Fig. 3a shows the LLE representation where the color of dots indicates the
true label of diagnosis, either CU or AD. It is observed that these data
points have a “V” shape, where CU subjects are more likely to be located
on the left side of the shape and AD subjects on the right side. If a
different dataset is used, LLE may produce a different orientation, e.g.,
the “V” shape may be upside down. To validate the consistency of this
particular shape, we had repeated the analysis on the second visit and
elation and (b) low correlation to AD diagnosis.



Table 1
A list of 59 prescreened features.

Feature name Description

ST103CV Volume (Cortical Parcellation) of RightParahippocampal
ST103TA Cortical Thickness Average of RightParahippocampal
ST109CV Volume (Cortical Parcellation) of RightPosteriorCingulate
ST111CV Volume (Cortical Parcellation) of RightPrecuneus
ST111TA Cortical Thickness Average of RightPrecuneus
ST115CV Volume (Cortical Parcellation) of RightSuperiorFrontal
ST117CV Volume (Cortical Parcellation) of RightSuperiorTemporal
ST117TA Cortical Thickness Average of RightSuperiorTemporal
ST118CV Volume (Cortical Parcellation) of RightSupramarginal
ST119TA Cortical Thickness Average of RightTemporalPole
ST123CV Volume (Cortical Parcellation) of RightUnknown
ST123TA Cortical Thickness Average of RightUnknown
ST123TS Cortical Thickness Standard Deviation of RightUnknown
ST129CV Volume (Cortical Parcellation) of LeftInsula
ST12SV Volume (WM Parcellation) of LeftAmygdala
ST130CV Volume (Cortical Parcellation) of RightInsula
ST13CV Volume (Cortical Parcellation) of LeftBankssts
ST13TA Cortical Thickness Average of LeftBankssts
ST19SV Volume (WM Parcellation) of LeftCerebralCortex
ST24CV Volume (Cortical Parcellation) of LeftEntorhinal
ST24TA Cortical Thickness Average of LeftEntorhinal
ST26CV Volume (Cortical Parcellation) of LeftFusiform
ST26TA Cortical Thickness Average of LeftFusiform
ST29SV Volume (WM Parcellation) of LeftHippocampus
ST30SV Volume (WM Parcellation) of LeftInferiorLateralVentricle
ST31CV Volume (Cortical Parcellation) of LeftInferiorParietal
ST31TA Cortical Thickness Average of LeftInferiorParietal
ST32CV Volume (Cortical Parcellation) of LeftInferiorTemporal
ST32TA Cortical Thickness Average of LeftInferiorTemporal
ST40CV Volume (Cortical Parcellation) of LeftMiddleTemporal
ST40TA Cortical Thickness Average of LeftMiddleTemporal
ST44CV Volume (Cortical Parcellation) of LeftParahippocampal
ST44TA Cortical Thickness Average of LeftParahippocampal
ST50CV Volume (Cortical Parcellation) of LeftPosteriorCingulate
ST52CV Volume (Cortical Parcellation) of LeftPrecuneus
ST52TA Cortical Thickness Average of LeftPrecuneus
ST58CV Volume (Cortical Parcellation) of LeftSuperiorTemporal
ST58TA Cortical Thickness Average of LeftSuperiorTemporal
ST59CV Volume (Cortical Parcellation) of LeftSupramarginal
ST60TA Cortical Thickness Average of LeftTemporalPole
ST64CV Volume (Cortical Parcellation) of LeftUnknown
ST64TA Cortical Thickness Average of LeftUnknown
ST64TS Cortical Thickness Standard Deviation of LeftUnknown
ST71SV Volume (WM Parcellation) of RightAmygdala
ST72CV Volume (Cortical Parcellation) of RightBankssts
ST72TA Cortical Thickness Average of RightBankssts
ST78SV Volume (WM Parcellation) of RightCerebralCortex
ST83CV Volume (Cortical Parcellation) of RightEntorhinal
ST83TA Cortical Thickness Average of RightEntorhinal
ST85CV Volume (Cortical Parcellation) of RightFusiform
ST85TA Cortical Thickness Average of RightFusiform
ST88SV Volume (WM Parcellation) of RightHippocampus
ST89SV Volume (WM Parcellation) of RightInferiorLateralVentricle
ST90CV Volume (Cortical Parcellation) of RightInferiorParietal
ST90TA Cortical Thickness Average of RightInferiorParietal
ST91CV Volume (Cortical Parcellation) of RightInferiorTemporal
ST91TA Cortical Thickness Average of RightInferiorTemporal
ST99CV Volume (Cortical Parcellation) of RightMiddleTemporal
ST99TA Cortical Thickness Average of RightMiddleTemporal
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third visit data and found that this “V” shape of LLE features was indeed
preserved with an appropriate tuning parameter k. Therefore, this shape
reflects the innate nonlinear data structure of 59 features. Once a new
observation of a subject is obtained, it can be projected onto this LLE map
and themovement of LLE features summarizes the changes in the original
features.

For the comparison purpose, we also constructed the two-
dimensional representation based on the linear method, Principal
Component Analysis (PCA). The PCA results are shown in Fig. 3b. One
can see that these two representations are quite different. In PCA, the
algorithm identifies two orthogonal directions with the largest global
data variability in the high-dimensional space and projects the data to the
5

plane defined by these two directions. In contrast, LLE algorithm pre-
serves the local structure of the original data points and tries to find the
closest shape to this structure in a low-dimensional space. In specific, the
relative distances among local neighborhoods in the original feature
space are approximately saved on the LLE map. It suggests that the ex-
tents of AD progressions of multiple subjects located nearby are com-
parable by observing the location change on the LLE map. In addition, as
can be seen from Fig. 3a, the “V” shape provides a relatively narrow path
of AD progression along which data points canmove, thus it enhances the
AD progression visualization of longitudinal data. Note that the intrinsic
dimensionality that covers 90% of data variability is found to be 9 for the
LLE features and 21 for the PCA features, which also shows the efficiency
of LLE features for dimension reduction.
2.6. Prediction power

Utilizing the new features derived from a dimension reduction algo-
rithm for constructing predictive models has been discussed in the
literature (see, e.g., Guerrero et al. (2011); Liu et al. (2013)). To inves-
tigate the prediction power of two dimensional LLE features, we first used
the LLE features of the first visit records as training data to build a
classification model, and then used the follow-up visit records as test data
to evaluate the performance of this classification model. The Support
Vector Machine (SVM) with Gaussian kernel function was chosen for the
binary CU/AD classification. The model parameters were tuned by a
10-fold cross-validation. The same classification method was applied on
the two dimensional PCA features too.

In Fig. 4, the receiver operating characteristic (ROC) curves of five
classification models (with the LLE or PCA features only, with the LLE or
PCA and original brain features, and with only original brain features)
are plotted. First, it shows that there is not a significant difference in
prediction power between the LLE and PCA features. For reference, the p-
value of the statistical test (Robin et al. (2011)) to compare two ROC
curves of LLE and PCA is 0.27, which indicates that those features
perform similarly for classification. As these low dimensional pre-
sentations are derived from the high dimensional original feature set,
using these representations alone for subject classification is expected to
lead to a loss of prediction power, as indicated by their ROCs. When
combined with original features, the LLE method, represented by “LLE þ
full features” in Fig. 4, starts to demonstrate better performance in AD
classification compared to the “PCA þ full features”. The advantage of
LLE comes from its nonlinear manifold embedding capability, which
preserves the intrinsic data structure within the original dataset. How-
ever, as shown in Fig. 4 where a majority of the blue solid curve is
indistinguishable from the grey solid curve, the improvement of the “LLE
þ full features” curve is found to be minimal as compared with the ROC
curve produced by the 59 original features (i.e., full features), which
suggests it is sufficient to use only original features for classification on
the LLE map.

We complement the LLE map by taking advantage of the prediction
power of the original 59 features. That is, the probability of AD is ob-
tained from the SVM model with the original 59 features and it is rep-
resented by color (from blue to red) for each data point on the map. We
call this complemented map the baseline template, as shown in Fig. 5,
where the red dots indicate the more AD likely patients and the blue dots
the more CU likely. This template provides a population model for the
subjects under study and it plays a critical role in contrasting an indi-
vidual subject's AD progression to the population pattern.
2.7. Projection of new observations

New observations, such as the follow-up visit records of the subjects
who are included in the baseline template or the subjects who are
diagnosed with MCI at their first visit, can be projected onto the baseline
template (see Fig. 6) by the following procedure:



Fig. 3. (a)LLE and (b)PCA representations of first visit records of CU and AD patients.

Fig. 4. Comparison of ROC curves from binary (CU/AD) classification models using 1) LLE features (blue dashed), 2) PCA features (red dashed), 3) LLE and original
features (blue solid), 4) PCA and original features (red solid), and 5) original features only (grey solid).
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1. Among the instances included in the baseline template, find the k
nearest neighbors (k ¼ 16 for the baseline template in Fig. 5) of the
new data point x0 in the original 59-feature space.

2. Compute the linear reconstruction weight w0j for each neighbor by
Eq. (6).

3. Compute two LLE coordinates of the new data point by linearly
combining LLE coordinates of the nearest neighbors using the same
weights. That is
6

y0 ¼
Xk

w0jy0j (8)

j¼1

4. Compute the probability of the new observation being classified to
the AD category, p0, by either 1) applying the SVMmodel built for the
baseline template or 2) a linear combination of the probabilities of k
nearest neighbors, p0j, using the same weights; that is



Fig. 5. Baseline template with probability of belonging to AD category.
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p0 ¼
Xk

w0jp0j (9)

j¼1

The first approach is used in this paper because it is more accurate, as
the full feature information is applied to the SVM model. However, the
second approach is useful when the classification model built for the
baseline template is missing or too complicated to be computationally
efficient.

3. Results

Fig. 6 gives the visualization of AD diagnoses of 6 subjects over 6 or 7
visits. All of these subjects are identified as MCIs on their first visit, but
the paths they took to progress to the AD state are quite different. For
example, Subjects 108 and 214 stays in the non-AD region at the bottom
of the “V” shape for a longer period before moving to the AD region;
while Subjects 269 and 631 move quickly to the AD region and even
accelerate the speed of moving to the far right of the “V” shape at later
visits. Therefore, comparing to the population under study, the mental
health of Subject 269 and Subject 631 are deteriorating faster and, most
likely, this trend will become worse in future.

Each of 562 subjects’ progression path can be depicted in the LLE AD
progression map. We observe the subject started at some location on the
map gradually moving to the right side over subsequent visits. Also, we
can observe the changing AD probability for each subject from the colors
of sequential points. The main diagnosis characteristics that we may
obtain from this LLE map are as follows:

� The current location: Where is the patient's mental health located on
the baseline template? Is it on the left arm of “V” or the right arm of
‘V”?

� The probability of AD: What does the classification model evaluate
the current health status? How likely is the patient to be an AD
patient?

� The direction of AD progression: Does the patient's health state tend
to stay in the same region as from the previous visits? In what di-
rection does it proceed?
7

� The progression rate: How fast does the patient's health state move to
the AD region? Is there a big change of health state between two
consecutive visits?

This visualization tool is able to depict AD progression more clearly
than merely examining the original 3D brain images. For example,
identifying the change of the size of ventricle is one of the traditional
ways of the image-based AD diagnosis, but sizing ventricle from images is
not a reliable method. To emphasize this point, the horizontal slices of
MRI scans corresponding to the sequential visit records of a subject in
Fig. 6c (RID ¼ 214) are shown in Fig. 7. The changes in ventricle area
from these images are difficult to detect by human eyes, whichmay cause
a failure in identifying and quantifying the disease's progression if the
radiologist only reads these images. On the other hand, the changes in
Fig. 6c are clear, and they provide an objective assessment of disease
progression that cannot be overlooked.

4. Discussion

In this study, we propose a new visualization tool for tracking AD
progression over time. The brain MRI features are represented in a two-
dimensional LLE feature map. As the classification accuracy for CU and
AD with 2 LLE features is only about 83%, which is inferior to the one
with full features, 92%, the probability of belonging to the AD category
will be computed from full features and depicted by a corresponding
color, which can be thought of as the third dimension. The proposed
method is capable of providing a convenient and intuitive AD diagnosis
result, where the progression of the disease can be monitored. Besides, a
SVM classifier trained with the LLE features and the full 59 prescreened
features can achieve very high classification accuracy. Along with other
clinical tests, we believe this new approach is promising in extracting
information from longitudinal brain image data for better tracking the
AD progression over time.

A particular observation in this study is that the application of
manifold-based dimension reduction technique on MRI brain image data
does not ensure its outperformance, in terms of the classification of CU
and AD patients, over the linear dimension reduction technique by itself.



Fig. 6. Examples of AD progression paths. A patient's AD progression path was represented by dots with visiting sequence and arrows. Each patient in these cases was
diagnosed with MCI on the first visit and progressed to AD on following visits. Colors of dots in background were dimmed out for clarification of a progression path.
RID is the subject ID.
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Fig. 7. Horizontal slices of MRI scans over a 4-year follow-up period for a subject with RID ¼ 214. The changes in the size of ventricular and subarachnoid spaces
are subtle.
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As shown in Section 2.6, the two LLE features alone do not necessarily
perform better than the PCA features on classifying CU and AD patients.
In fact, Van Der Maaten et al. (2009) describe that PCA is likely to
perform better than non-linear method for a real-world dataset. A
possible reason could be the violation of the fundamental assumption of
LLE algorithm, i.e. the local linearity, in the real-world dataset. However,
as shown in Section 2.7, because LLE features are able to preserve the
local structure of a dataset, they complement the original data in a
classification algorithm. Thus, by combining LLE features with original
features we can achieve a better classification performance over the
linear dimension reduction technique. The multicollinearity between the
original features and the PCA features, which are linear combinations of
original features, also contributes to the inferior performance of PCA.

In this paper, we used the dataset containing the brain features
extracted from the FreeSurfer processing, which requires the knowledge
of 3D modeling for brain images and it is not always guaranteed that a
new observation could be processed by the same process due to the
software availability and the variability in quality control. In future
research, we will investigate applications of other dimension reduction
methods and machine learning techniques, such as t-SNE (Van Der
Maaten and Hinton, 2008), ISOMAP (Tenenbaum et al., 2000), random
forests and deep learning, in order to explicitly reveal complex latent
patterns in voxel-based brain image data and to build robust models. If
we can directly utilize voxel data without brain feature extraction, it will
provide a simpler and unified method for the image-based AD diagnosis
and prognosis.
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